Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Infect Dis ; 29(3): 664-667, 2023 03.
Article in English | MEDLINE | ID: covidwho-2282638

ABSTRACT

We tested coatis (Nasua nasua) living in an urban park near a densely populated area of Brazil and found natural SARS-CoV-2 Zeta variant infections by using quantitative reverse transcription PCR, genomic sequencing, and serologic surveillance. We recommend a One Health strategy to improve surveillance of and response to COVID-19.


Subject(s)
COVID-19 , Procyonidae , Animals , Humans , SARS-CoV-2 , Brazil/epidemiology
2.
Cytokine ; 154: 155874, 2022 06.
Article in English | MEDLINE | ID: covidwho-1944749

ABSTRACT

The SARS-CoV-2 virus has infected and killed millions of people, but little is known about the risk factors that lead to the development of severe, mild or asymptomatic conditions after infection. The individual immune response and the balance of cytokines and chemokines have been shown to be important for the prognosis of patients. Additionally, it is essential to understand how the production of specific antibodies with viral neutralizing capacity is established. In this context, this study aimed to identify positive individuals for IgG anti-SARS-CoV-2 in a large population of blood donors (n = 7837) to establish their immune response profile and to evaluate its viral neutralization capacity. The prevalence found for IgG anti-SARS-CoV-2 was 5.6% (n = 441), with male blood donors (61.9%) being more prevalent among the positive ones. The results showed that positive individuals for IgG anti-SARS-CoV-2 have high serum concentrations of chemokines, TNF, IFN-γ and IL-10. The analyses showed that the positivity index for IgG anti-SARS-CoV-2 is associated with the neutralizing capacity of the antibodies, which, in turn, is significantly related to lower serum concentrations of CCL5 and CXCL10. The results allow us to hypothesize that the development and maintenance of IgG anti-SARS-CoV-2 antibodies in infected individuals occurs in a pro-inflammatory microenvironment well regulated by IL-10 with great capacity for recruiting cells from the innate and adaptive immune systems.


Subject(s)
Antibodies, Viral , Blood Donors , COVID-19 , Immunoglobulin G , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Chemokines , Female , Humans , Immunoglobulin G/blood , Interferon-gamma , Interleukin-10 , Male , SARS-CoV-2 , Tumor Necrosis Factor-alpha
3.
J Virol ; 95(22): e0127621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1494956

ABSTRACT

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Subject(s)
Coronavirus Infections/pathology , Disease Models, Animal , Lung/pathology , Murine hepatitis virus/pathogenicity , Animals , Cell Line , Containment of Biohazards , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Inflammation , Liver/pathology , Liver/virology , Lung/virology , Mice , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Virus Replication/drug effects
4.
Water Res ; 195: 117002, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1117788

ABSTRACT

COVID-19 patients can excrete viable SARS-CoV-2 virus via urine and faeces, which has raised concerns over the possibility of COVID-19 transmission via aerosolized contaminated water or via the faecal-oral route. These concerns are especially exacerbated in many low- and middle-income countries, where untreated sewage is frequently discharged to surface waters. SARS-CoV-2 RNA has been detected in river water (RW) and raw wastewater (WW) samples. However, little is known about SARS-CoV-2 viability in these environmental matrices. Determining the persistence of SARS-CoV-2 in water under different environmental conditions is of great importance for basic assumptions in quantitative microbial risk assessment (QMRA). In this study, the persistence of SARS-CoV-2 was assessed using plaque assays following spiking of RW and WW samples with infectious SARS-CoV-2 that was previously isolated from a COVID-19 patient. These assays were carried out on autoclaved RW and WW samples, filtered (0.22 µm) and unfiltered, at 4 °C and 24 °C. Linear and nonlinear regression models were adjusted to the data. The Weibull regression model achieved the lowest root mean square error (RMSE) and was hence chosen to estimate T90 and T99 (time required for 1 log and 2 log reductions, respectively). SARS-CoV-2 remained viable longer in filtered compared with unfiltered samples. RW and WW showed T90 values of 1.9 and 1.2 day and T99 values of 6.4 and 4.0 days, respectively. When samples were filtered through 0.22 µm pore size membranes, T90 values increased to 3.3 and 1.5 days, and T99 increased to 8.5 and 4.5 days, for RW and WW samples, respectively. Remarkable increases in SARS-CoV-2 persistence were observed in assays at 4 °C, which showed T90 values of 7.7 and 5.5 days, and T99 values of 18.7 and 17.5 days for RW and WW, respectively. These results highlight the variability of SARS-CoV-2 persistence in water and wastewater matrices and can be highly relevant to efforts aimed at quantifying water-related risks, which could be valuable for understanding and controlling the pandemic.


Subject(s)
COVID-19 , Wastewater , Humans , RNA, Viral , Rivers , SARS-CoV-2 , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL